Proneural enhancement by Notch overcomes Suppressor-of-Hairless repressor function in the developing Drosophila eye
نویسندگان
چکیده
BACKGROUND The receptor protein Notch plays a conserved role in restricting neural-fate specification during lateral inhibition. Lateral inhibition requires the Notch intracellular domain to coactivate Su(H)-mediated transcription of the Enhancer-of-split Complex. During Drosophila eye development, Notch plays an additional role in promoting neural fate independently of Su(H) and E(spl)-C, and this finding suggests an alternative mechanism of Notch signal transduction. RESULTS We used genetic mosaics to analyze the proneural enhancement pathway. As in lateral inhibition, the metalloprotease Kuzbanian, the EGF repeat 12 region of the Notch extracellular domain, Presenilin, and the Notch intracellular domain were required. By contrast, proneural enhancement became constitutive in the absence of Su(H), and this led to premature differentiation and upregulation of the Atonal and Senseless proteins. Ectopic Notch signaling by Delta expression ahead of the morphogenetic furrow also caused premature differentiation. CONCLUSIONS Proneural enhancement and lateral inhibition use similar ligand binding and receptor processing but differ in the nuclear role of Su(H). Prior to Notch signaling, Su(H) represses neural development directly, not indirectly through E(spl)-C. During proneural enhancement, the Notch intracellular domain overcomes the repression of neural differentiation. Later, lateral inhibition restores the repression of neural development by a different mechanism, requiring E(spl)-C transcription. Thus, Notch restricts neurogenesis temporally to a narrow time interval between two modes of repression.
منابع مشابه
A subset of notch functions during Drosophila eye development require Su(H) and the E(spl) gene complex.
The Notch signalling pathway is involved in many processes where cell fate is decided. Previous work showed that Notch is required at successive steps during R8 specification in the Drosophila eye. Initially, Notch enhances atonal expression and promotes atonal function. After atonal autoregulation has been established, Notch signalling represses atonal expression during lateral specification. ...
متن کاملAtaxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster.
The role of the Notch pathway during the lateral inhibition that underlies binary cell fate choice is extensively studied, but the context specificity that generates diverse outcomes is less well understood. In the peripheral nervous system of Drosophila melanogaster, differential Notch signaling between cells of the proneural cluster orchestrates sensory organ specification. Here we report fun...
متن کاملTranscriptional repression by Suppressor of Hairless involves the binding of a Hairless-dCtBP complex in Drosophila
Notch is the receptor for a conserved signaling pathway that regulates numerous cell fate decisions during development [1]. Signal transduction involves the presenilin-dependent intracellular processing of Notch and the nuclear translocation of the intracellular domain of Notch, NICD [2-6]. NICD associates with Suppressor of Hairless [Su(H)], a DNA binding protein, and Mastermind (Mam), a trans...
متن کاملThe Drosophila IgC2 domain protein Friend-of-Echinoid, a paralogue of Echinoid, limits the number of sensory organ precursors in the wing disc and interacts with the Notch signaling pathway.
The Notch signaling pathway is critical in cell fate specification throughout development. In the developing wing disc, single sensory organ precursors (SOPs) are selected from proneural clusters via a process of lateral inhibition mediated by the Notch signaling pathway. The epidermal growth factor receptor (EGFR) pathway has also been implicated in SOP formation. Here, we describe the Drosoph...
متن کاملMolecular Analysis of the Notch Repressor-Complex in Drosophila: Characterization of Potential Hairless Binding Sites on Suppressor of Hairless
The Notch signalling pathway mediates cell-cell communication in a wide variety of organisms. The major components, as well as the basic mechanisms of Notch signal transduction, are remarkably well conserved amongst vertebrates and invertebrates. Notch signalling results in transcriptional activation of Notch target genes, which is mediated by an activator complex composed of the DNA binding pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Current Biology
دوره 11 شماره
صفحات -
تاریخ انتشار 2001